If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+10x=120
We move all terms to the left:
4.9x^2+10x-(120)=0
a = 4.9; b = 10; c = -120;
Δ = b2-4ac
Δ = 102-4·4.9·(-120)
Δ = 2452
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2452}=\sqrt{4*613}=\sqrt{4}*\sqrt{613}=2\sqrt{613}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{613}}{2*4.9}=\frac{-10-2\sqrt{613}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{613}}{2*4.9}=\frac{-10+2\sqrt{613}}{9.8} $
| 27=9*1/3*x | | 7x-7=4x-6 | | -7+n=-13 | | 5n2+10n-5=0 | | 0=70-16t^2 | | -x+1/55x=41/5 | | x-14=6-3(x-4 | | −9x+1=−1x+25 | | 7x+3+6x9=12x+5 | | 9x−18=198 | | 3.96x+35.64=71.28 | | 2(3x–1)=–6x–2 | | 14x-3=4x+1 | | z+55=90 | | -7(4-6x)=-28+2x | | 4−6x)=16 | | 12+5w=4w=15 | | 12+52-4w=15 | | p+30+80=90 | | 3t=-8.16t | | p+30+80=180 | | 8(3a+6)=9(2-4) | | .75x−x)=21 | | 8(3a+6)=9(2@-4) | | 2(x-6)=3x(x+6) | | (8+h)/10=1 | | -0.5x+12=2x+27 | | 20+x=6 | | 5u/7=10 | | 7.7x+2025=59.29+45x | | 1/2(2x+6)=2x+13 | | 2x^-3x=25 |